metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[4-(dimethylamino)pyridinium] bis(1,2-dicyanoethylene-1,2-dithiolato- κ^2 S,S')nickelate(II)

Jia-Rong Zhou, Yong Hou and Chun-Lin Ni*

Department of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou 510642, People's Republic of China Correspondence e-mail: niclchem@scau.edu.cn

Received 5 June 2007; accepted 26 June 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.079; data-to-parameter ratio = 18.4.

The asymmetric unit of the title ion-pair complex, $(C_7H_{11}N_2)_2$ -[Ni(C₄N₂S₂)₂] or (DMAPH)₂[Ni(mnt)₂] [where DMAPH is 4-(dimethylamino)pyridinium and mnt is maleonitriledithiolate], consists of one cation and one half-anion, the Ni^{II} atom lying on a crystallographic centre of symmetry. The metal is coordinated by four S atoms of two mnt²⁻ ligands in a squareplanar geometry. The $[Ni(mnt)_2]^{2-}$ anions (A) and DMAPH⁺ cations (C) are stacked in an ACCA arrangement to form onedimensional columns along the a axis, with a centroid-centroid separation between the pyridine rings of 4.032 (4) Å. The columns are linked by intermolecular N-H···N hydrogen bonds, resulting in a two-dimensional network.

Related literature

For general background, see: Robertson & Cronin (2002). For a related structure, see: (Zhou & Ren, 2006).

Experimental

Crystal data

 $(C_7H_{11}N_2)_2[Ni(C_4N_2S_2)_2]$ $M_r = 585.43$ Monoclinic, $P2_1/c$ a = 14.1631 (12) Åb = 6.5833 (6) Å c = 15.0751 (13) Å $\beta = 114.771 (1)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.628, \ T_{\max} = 0.851$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 1.08	refinement
3075 reflections	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
167 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N4\!-\!H4\!\cdots\!N1^i$ 0.89 (3) 2.34 (3) 3.040 (2) 135 (2)

V = 1276.27 (19) Å³

 $0.46 \times 0.40 \times 0.15 \text{ mm}$

8238 measured reflections

3075 independent reflections

2744 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.12 \text{ mm}^{-1}$

T = 291 (2) K

 $R_{\rm int} = 0.015$

Z = 2

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the President's Science Foundation of South China Agricultural University (grant No. 2005 K092) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2152).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.

Sheldrick, G. M. (2000). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Zhou, H. & Ren, X.-M. (2006). Acta Cryst. E62, m1119-m1121.

supplementary materials

Acta Cryst. (2007). E63, m2030 [doi:10.1107/S1600536807031157]

Bis[4-(dimethylamino)pyridinium] bis(1,2-dicyanoethylene-1,2-dithiolato- $\kappa^2 S$,S')nickelate(II)

J.-R. Zhou, Y. Hou and C.-L. Ni

Comment

The syntheses, crystal structures and properties of maleonitriledithiolate (mnt^{2-}) transition metal complexes have received much attention in many areas such as non-linear optics and magnetic and conducting materials [Robertson & Cronin, 2002]. The introduction of some organic cations was recognized to be a powerful strategy to tune the stacking pattern of the Ni(mnt)₂ dianion in order to obtain molecular materials with unusual magnetic properties.

The asymmetric unit of the title compound consists of one DMAPH⁺ cation (DMAPH is 4-dimethylaminopyridinium) and one half-anion of formula $Ni(mnt)_2^{2^-}$ (mnt is 1,2-dicyanoethylene-1,2-dithiolate or maleonitriledithiolate). The nickel(II) metal, which lies on a crystallographic centre of symmetry, is coordinated by four S atoms from two mnt ligands in a square planar geometry (Fig. 1). The five-membered chelating ring is essentially planar (maximum displacement 0.019 (2) Å for atom C2). The conformations of anion and cation are similar to those observed in the corresponding copper(II) complex (Zhou & Ren, 2006). The Ni(mnt)₂ anions (A) and DMAPH⁺ cations (C) are stacked in a ACCA arrangement to form onedimensional columns along the *a* axis, with a centroid···centroid separation between the pyridine rings of 4.032 (4) Å. The columns are linked by intermolecular N—H···N hydrogen bonds (Table 1) resulting in a two-dimensional network (Fig. 2).

Experimental

The title compound was prepared by the direct reaction of NiCl₂· $6H_2O$ (1 mmol, 0.24 g), Na₂mnt (2 mmol, 0.37 g) and 4-dimethylaminopyridinium chloride (2 mmol, 0.32 g) in water (60 ml). Red block-shaped single crystals were obtained by slow evaporation of a CH₃CN solution at room temperature for about two weeks.

Refinement

The pyridinium H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in geometrically calculated positions with C—H = 0.93–0.96 Å, and refined using the riding atom approximation, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for the methyl groups.

Figures

Fig. 1. The molecular structure of the title compound, with atom-labelling scheme and 30% probability displacement ellipsoids. H atoms are omitted for clarity. Atoms labelled with the suffix A are generated by the symmetry operator (-x, -y, -z).

Fig. 2. A perspective view of the crystal packing of the title compound viewed along the *a* axis. H atoms are omitted for clarity.

$Bis[4-(dimethylamino) pyridinium] \ bis(1,2-dicyanoethylene-1,2-dithiolato-\kappa^2 S,S') nickelate(II)$

Crystal data	
(C ₇ H ₁₁ N ₂) ₂ [Ni(C ₄ N ₂ S ₂) ₂]	$F_{000} = 604$
$M_r = 585.43$	$D_{\rm x} = 1.523 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4341 reflections
a = 14.1631 (12) Å	$\theta = 2.7 - 29.3^{\circ}$
b = 6.5833 (6) Å	$\mu = 1.12 \text{ mm}^{-1}$
c = 15.0751 (13) Å	T = 291 (2) K
$\beta = 114.7710 \ (10)^{\circ}$	Block, red
$V = 1276.27 (19) \text{ Å}^3$	$0.46\times0.40\times0.15~mm$
Z = 2	

Data collection

Bruker SMART APEX CCD diffractometer	3075 independent reflections
Radiation source: fine-focus sealed tube	2744 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.015$
T = 291(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -10 \rightarrow 18$
$T_{\min} = 0.628, \ T_{\max} = 0.851$	$k = -8 \rightarrow 8$
8238 measured reflections	$l = -19 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^2(F_o^2) + (0.0471P)^2 + 0.1627P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.079$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.08	$\Delta \rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$

3075 reflections

167 parameters

methods

 $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXTL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Primary atom site location: structure-invariant direct Extinction coefficient: 0.0060 (8)

Secondary atom site location: difference Fourier map

Fractional	atomic	coordinates	and	isotropi	c or	equivalent	isotro	pic dis	placement	parameters ($(Å^2)$)

	x	У	Z	Uiso*/Ueq
Ni1	0.0000	0.0000	0.0000	0.03144 (10)
S1	0.09496 (3)	0.27334 (6)	0.03137 (3)	0.04174 (12)
S2	0.11660 (3)	-0.16103 (6)	0.12276 (3)	0.04267 (12)
C1	0.20511 (11)	0.2056 (2)	0.13333 (11)	0.0355 (3)
C2	0.21416 (12)	0.0182 (2)	0.17392 (11)	0.0360 (3)
C3	0.30409 (13)	-0.0369 (2)	0.25921 (12)	0.0423 (4)
C4	0.28715 (12)	0.3503 (2)	0.17446 (12)	0.0418 (3)
N1	0.35347 (13)	0.4638 (2)	0.20822 (13)	0.0602 (4)
N2	0.37520 (13)	-0.0796 (3)	0.32811 (12)	0.0621 (4)
C5	0.57111 (14)	0.1127 (3)	-0.10347 (14)	0.0569 (5)
Н5	0.5327	0.1986	-0.1550	0.068*
C6	0.66305 (13)	0.1782 (3)	-0.03421 (13)	0.0484 (4)
Н6	0.6866	0.3081	-0.0385	0.058*
C7	0.72351 (12)	0.0507 (2)	0.04465 (11)	0.0382 (3)
C8	0.68034 (14)	-0.1433 (3)	0.04575 (14)	0.0486 (4)
H8	0.7159	-0.2338	0.0961	0.058*
C9	0.58738 (15)	-0.1975 (3)	-0.02630 (16)	0.0572 (5)
Н9	0.5602	-0.3252	-0.0244	0.069*
C10	0.88001 (16)	-0.0288 (3)	0.18988 (14)	0.0552 (5)
H10A	0.8451	-0.0643	0.2302	0.083*
H10B	0.9447	0.0368	0.2290	0.083*
H10C	0.8932	-0.1495	0.1612	0.083*
C11	0.85807 (15)	0.3081 (3)	0.11201 (15)	0.0578 (5)
H11A	0.8942	0.3057	0.0705	0.087*
H11B	0.9056	0.3447	0.1771	0.087*
H11C	0.8028	0.4060	0.0876	0.087*
H4	0.472 (2)	-0.107 (4)	-0.1457 (19)	0.094 (9)*
N3	0.81502 (10)	0.1083 (2)	0.11314 (10)	0.0425 (3)
N4	0.53422 (12)	-0.0721 (3)	-0.09962 (13)	0.0596 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02752 (15)	0.03259 (15)	0.03065 (15)	-0.00072 (9)	0.00868 (11)	0.00233 (9)
S1	0.0343 (2)	0.0353 (2)	0.0432 (2)	-0.00337 (14)	0.00413 (16)	0.00727 (15)
S2	0.0382 (2)	0.0373 (2)	0.0404 (2)	-0.00338 (15)	0.00455 (16)	0.00841 (15)
C1	0.0302 (7)	0.0374 (7)	0.0356 (7)	0.0001 (6)	0.0104 (6)	-0.0025 (6)
C2	0.0303 (7)	0.0400 (8)	0.0336 (7)	0.0018 (5)	0.0093 (6)	-0.0005 (5)

supplementary materials

C3	0.0384 (8)	0.0399 (7)	0.0416 (9)	0.0033 (6)	0.0099 (7)	-0.0001 (6)
C4	0.0357 (8)	0.0403 (8)	0.0417 (8)	0.0008 (6)	0.0085 (6)	0.0020 (6)
N1	0.0455 (9)	0.0502 (8)	0.0626 (10)	-0.0107 (7)	0.0007 (7)	0.0012 (7)
N2	0.0491 (9)	0.0626 (10)	0.0536 (9)	0.0113 (8)	0.0008 (7)	0.0056 (8)
C5	0.0447 (9)	0.0711 (13)	0.0450 (9)	0.0119 (9)	0.0092 (8)	0.0012 (8)
C6	0.0460 (9)	0.0480 (9)	0.0476 (9)	0.0029 (7)	0.0162 (7)	0.0034 (7)
C7	0.0358 (8)	0.0428 (7)	0.0380 (8)	-0.0001 (6)	0.0174 (6)	-0.0031 (6)
C8	0.0459 (9)	0.0437 (8)	0.0549 (10)	-0.0032 (7)	0.0198 (8)	-0.0002 (7)
C9	0.0496 (10)	0.0505 (10)	0.0726 (13)	-0.0114 (8)	0.0267 (10)	-0.0149 (9)
C10	0.0484 (10)	0.0668 (12)	0.0411 (9)	0.0072 (8)	0.0095 (8)	0.0001 (8)
C11	0.0544 (11)	0.0585 (11)	0.0591 (11)	-0.0190 (9)	0.0224 (9)	-0.0131 (9)
N3	0.0368 (7)	0.0470 (7)	0.0401 (7)	-0.0027 (6)	0.0126 (5)	-0.0033 (6)
N4	0.0366 (8)	0.0743 (11)	0.0589 (10)	-0.0031 (8)	0.0113 (7)	-0.0196 (9)

Geometric parameters (Å, °)

Ni1—S2	2 1714 (4)	C7—N3	1330(2)
Nii sol	2.1711(1)	C7 C8	1.330(2)
N11—52	2.1714(4)	C^{2}	1.419 (2)
N11—51	2.1766 (4)	68-69	1.357 (3)
Ni1—S1 ¹	2.1766 (4)	C8—H8	0.9300
S1—C1	1.7278 (15)	C9—N4	1.332 (3)
S2—C2	1.7330 (15)	С9—Н9	0.9300
C1—C2	1.359 (2)	C10—N3	1.452 (2)
C1—C4	1.428 (2)	C10—H10A	0.9600
C2—C3	1.426 (2)	C10—H10B	0.9600
C3—N2	1.138 (2)	C10—H10C	0.9600
C4—N1	1.140 (2)	C11—N3	1.453 (2)
C5—N4	1.335 (3)	C11—H11A	0.9600
C5—C6	1.354 (3)	C11—H11B	0.9600
С5—Н5	0.9300	C11—H11C	0.9600
С6—С7	1.414 (2)	N4—H4	0.89 (3)
С6—Н6	0.9300		
S2—Ni1—S2 ⁱ	180.00 (4)	C9—C8—C7	120.37 (17)
S2—Ni1—S1	92.200 (14)	С9—С8—Н8	119.8
S2 ⁱ —Ni1—S1	87.800 (14)	С7—С8—Н8	119.8
S2—Ni1—S1 ⁱ	87.800 (14)	N4—C9—C8	121.51 (18)
S2 ⁱ —Ni1—S1 ⁱ	92.200 (14)	N4—C9—H9	119.2
S1—Ni1—S1 ⁱ	180.00 (2)	С8—С9—Н9	119.2
C1—S1—Ni1	103.03 (5)	N3-C10-H10A	109.5
C2—S2—Ni1	103.11 (5)	N3-C10-H10B	109.5
C2-C1-C4	120.26 (13)	H10A—C10—H10B	109.5
C2-C1-S1	120.95 (12)	N3—C10—H10C	109.5
C4-C1-S1	118.78 (11)	H10A—C10—H10C	109.5
C1—C2—C3	121.12 (14)	H10B—C10—H10C	109.5
C1—C2—S2	120.69 (12)	N3—C11—H11A	109.5
C3—C2—S2	118.19 (11)	N3—C11—H11B	109.5
N2—C3—C2	179.0 (2)	H11A—C11—H11B	109.5

N1—C4—C1	179.03 (19)	N3—C11—H11C	109.5
N4—C5—C6	121.62 (18)	H11A—C11—H11C	109.5
N4—C5—H5	119.2	H11B—C11—H11C	109.5
С6—С5—Н5	119.2	C7—N3—C10	121.84 (15)
C5—C6—C7	120.49 (18)	C7—N3—C11	121.77 (15)
С5—С6—Н6	119.8	C10—N3—C11	116.30 (15)
С7—С6—Н6	119.8	C9—N4—C5	120.39 (16)
N3—C7—C6	122.23 (15)	C9—N4—H4	120.9 (18)
N3—C7—C8	122.16 (16)	C5—N4—H4	118.6 (18)
C6—C7—C8	115.61 (15)		
S2—Ni1—S1—C1	-0.14 (5)	N4—C5—C6—C7	0.4 (3)
S2 ⁱ —Ni1—S1—C1	179.86 (5)	C5-C6-C7-N3	178.82 (16)
S1—Ni1—S2—C2	0.74 (6)	C5—C6—C7—C8	-0.9 (3)
S1 ⁱ —Ni1—S2—C2	-179.26 (6)	N3—C7—C8—C9	-179.04 (17)
Ni1—S1—C1—C2	-0.76 (14)	C6—C7—C8—C9	0.7 (3)
Ni1—S1—C1—C4	179.09 (11)	C7—C8—C9—N4	0.1 (3)
C4—C1—C2—C3	1.4 (2)	C6—C7—N3—C10	-175.46 (16)
S1—C1—C2—C3	-178.76 (13)	C8—C7—N3—C10	4.3 (3)
C4—C1—C2—S2	-178.27 (12)	C6-C7-N3-C11	1.0 (2)
S1—C1—C2—S2	1.57 (19)	C8—C7—N3—C11	-179.29 (16)
Ni1—S2—C2—C1	-1.46 (14)	C8—C9—N4—C5	-0.7 (3)
Ni1—S2—C2—C3	178.86 (12)	C6—C5—N4—C9	0.4 (3)
Symmetry codes: (i) $-x, -y, -z$.			
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N4—H4…N1 ⁱⁱ	0.89 (3)	2.34 (3)	3.040 (2)	135 (2)
Symmetry codes: (ii) $x, -y+1/2, z-1/2$.				

Fig. 1

